GLG4sim: Example with a θ₁₃ Experiment at Daya Bay

MAND Workshop
June 2005

Lauren Hsu
Lawrence-Berkeley National Laboratory

Detector Concepts for Reactor θ_{13} Experiments

Some of the Common Features of these Experiments:

- 2 or 3 zones (target, gamma-catcher, buffer)
- Detecting reactor anti-neutrinos via inversebeta decay (use delayed coincidence to suppress accidental backgrounds)
- High light yield liquid scintillator that also provides the target protons
- Gadolinium doping to define target volume

Many are also shared with KamLAND

Using GLG4sim for Daya Bay Detector Design Studies

2 Design Concepts Investigated:

- "Barrel-Mounted"
- "Endcap-Mounted"

Some Questions We Hope to Answer:

- What is the detected light yield and anticipated energy resolution (< 10% at 1 MeV)?
- How uniform is the response?
- How does the design affect efficiency for signal detection?
- What is the potential for event vertex reconstruction?

Barrel Mounted Design

PMT Coverage: Barrel Only Target Volume: 40T

Number of PMT's: 608 Coverage:

12% on barrel

Diffuse Reflective Paint on endcaps Reflectivity = 0.9

$$R_{target} = 1.5 m$$

 $L_{target} = 7.1 m$

 $R_{catcher} = 2.0 m$ $L_{catcher} = 8.0 m$

$$R_{tank} = 2.6m$$
$$L_{tank} = 9.0m$$

Endcap Mounted Design

PMT Coverage: Endcap Only

Target Volume: 40T

Diffuse
Reflective Paint
On barrel
Reflectivity = 0.9

Number of PMT's: 606 Coverage: 65% on endcaps

$$R_{target} = 1.7m$$

 $L_{target} = 6.0m$

$$R_{catcher} = 2.1 m$$

 $L_{catcher} = 7.0 m$

$$R_{tank} = 2.7 \text{m}$$

 $L_{tank} = 9.3 \text{m}$

Motivation:

- Larger target radius,
- Easier to replace PMT's
- Higher light yields and potentially more uniform

Features of GLG4sim Exploited by These Studies

- KamLAND-like materials descriptions (including liquid scintillator optical properties).
- Custom-written processes for optical photon propagation, scintillation and interaction w/ PMT photocathode
- Existing code infrastructure (flexible file ouput, user interface, nice visualization tools).
- Familiarity (for me)

See talk on KLG4sim and other GLG4sim talks for more specifics

Looking for High Light Output

To Leading Order: $E \alpha N_{pe}$, so $\Delta E/E \alpha 1/\sqrt{N_{pe}}$

Results for Endcap detector are sensitive to attenuation length and reflectivity

Energy Resolution

Looking at Visible Energy

Convolute with expected detector resolution to simulate positron energy spectrum

Run with optical sim. off and look at "Escint": A nice shortcut if results don't depend on detailed optical simulation

Efficiency Studies

Uniformity

Checked with isolated 1 MeV e⁺ simulated at discrete points along the z and r axis.

Results for both detectors are quite sensitive to reflectivity!

Uniformity

Based on 20,000 1MeV e+ uniformly filling target volume

Colors show potential bias in estimated E

We see a deficit of detected N_{pe} near reflecting surfaces and the opposite trend near photo-detecting surfaces.

Energy Resolution Smearing from Non-Uniformity

Neglecting to correct for position dependent deviations causes extra smearing in energy resolution. Even with the smearing we still achieve $\Delta E/E < 10\%$ at 1 MeV

Vertexing

Charge-based fits estimate z position to ~30cm. Can improve on this by

Radial distances harder to determine from charge distributions, needs more Investigation with toy time-based fits.

Summary

We've been using GLG4sim to improve our understanding of how our two cylindrical detector designs work and to help optimize these designs.

- Light yield and anticipated energy resolution are good, optimal $\Delta E/E = 5-6\%$
- Uniformity: Deviations of 5-7% near boundaries in worst places, assuming no position corrections, energy resolution suffers a little, but both detectors still achieve <10% energy resolution.
- Efficiency loss in gamma cascade detection is small (~5%) for 40cm gamma catcher, still investigating other configurations.
- Event Vertex Reconstruction gives ~30cm resolution in z r position reconstruction likely to gain more from timing.

Notes

- Contact Glenn and get name of person who has gd capture extension for geant4
- Check that stainless is really reflecting in GLG4sim!!
- If you don't do 1, then at least consider fixing hokey Gd generator with Dario's suggestion
- Generate Gd peak plot without a gamma catcher.